skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Movilla_Miangolarra, Ander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reaction–diffusion equations are commonly used to model a diverse array of complex systems, including biological, chemical, and physical processes. Typically, these models are phenomenological, requiring the fitting of parameters to experimental data. In the present work, we introduce a novel formalism to construct reaction–diffusion models that is grounded in the principle of maximum entropy. This new formalism aims to incorporate various types of experimental data, including ensemble currents, distributions at different points in time, or moments of such. To this end, we expand the framework of Schrödinger bridges and maximum caliber problems to nonlinear interacting systems. We illustrate the usefulness of the proposed approach by modeling the evolution of (i) a morphogen across the fin of a zebrafish and (ii) the population of two varieties of toads in Poland, so as to match the experimental data. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026